

# FLASHFlux Working Group Status: Production Transition to CATALYST and Continuing Usage Through POWER

Paul Stackhouse (NASA LaRC)

PC Sawaengphokhai, Hunter Winecoff, Jay Garg (SSAI)
POWER Team: Bradley MacPherson and Christopher Higham (Booz-Allen-Hamilton)

CERES Team members: Katie Dejwakh, Dave Doelling (LaRC), Walt Miller, Pam Mlynczak, Victor Sothcott, Cathy Nguyen, Nelson Hillyer (SSAI)

Tonya Davenport and Fenny Wang (Ret.) and the Atmospheric Science Data Center Team (SSAI)



### **CERES FLASHFlux Overview**

#### FLASHFlux Overview

- Uses CERES based production system through inversion
- Periodic calibration updates projected forward; running 3-day TISA
- Upgrade from S4PM production system to CATALYST
- New Data Product: NOAA-20 SSF

#### FLASHFlux Latency Objectives

- SSF products within 3-4 days
- Global 1x1 daily averages from FF TISA; goal: 5-7 days latency

#### FLASHFlux Uses

- Primarily used for applied science and education (i.e., POWER and Globe Clouds)
- Supports also QC for selected missions (e.g., NOAA NESDIS)
- TOA gridded fluxes; normalized to TOA EBAF for annual "State of the Climate" assessments.



## **FLASHFlux Operational Status**

#### FF Production status:

- Current Status: SSF Terra: 10/3/22; SSF Aqua: 10/3/22; TISA: 10/1/22
- Updated calibration coefficients received; promoted as cc change effective 10/1/22

#### FF Operational Issues:

- Transitioned to DarkHorse Ingesting system on June 6
  - Metadata issues since then means that no data is available on EarthData search after that date; must obtain through CERES subsetter or DDD
- LAADS system maintenance on August 1st delayed several input data products; Additional system maintenance from August 23-25, 2022.
- Transition to CATALYST Completed on 9/30



## FLASHFlux (v4A) SSF Latency Assessment

Success rate % of time < 3 (dark/thick bar) or 4 days (lighter/thinner bar) for S4PM

Last 3 months show latency from CATALYST production (outlined bars)

Since Oct 2021, both Terra & Aqua had 8 months at or exceeding 90% of days at 4 day latency

Only Jan and Feb 2022 had all SSF within 4 days using S4PM; CATALYST achieved this in Sep 2022 => perfect months!

Lags due to: maneuvers/ satellite issues, ASDC updates/outages, ASDC Darkhorse, GSFC LAADS

SSF utilized by GLOBE Clouds; occasional satellite algorithm comparisons (i.e., NOAA GOES ABI, CloudSat Production)





## **FLASHFlux TISA Latency Assessment**



Success rate is % of time data released with latency of 6 (light blue) or 7 days (dark blue)

With S4PM, Jan, Feb, April reached 100% at 6 day latency; 10 of 12 months had 7 day latency > 90%

CATALYST achieved data 100% release within 6 days in Sept 22

Lags due to: maneuvers, ASDC&GSFC updates/ outages

TISA delivered to POWER Web Services Suite



## FLASHFlux Data Delivery via POWER Web Services Portal (2021/09/01 to 2022/08/31)

## CERES Data Orders Delivered via POWER <3 weeks latency (FLASHFlux Data)

|           | Total   | Monthly | Avg. Last<br>3 Months |
|-----------|---------|---------|-----------------------|
| Unique    | ~21.2 K | ~2.1 K  | ~3.0 K                |
| Users IPs | (13%)   | (13%)   | (16%)                 |
| Requests  | ~19.1 M | ~1.6 M  | ~1.84 M               |
|           | (46%)   | (46%)   | (44%)                 |

## **CERES Data Orders Delivered via POWER** including SYN1Deg and FLASHFlux data

|                                                                | Total    | Monthly | Avg. Last<br>3 Months |  |  |  |
|----------------------------------------------------------------|----------|---------|-----------------------|--|--|--|
| Unique                                                         | ~88.6 K  | ~8.5 K  | ~10 K                 |  |  |  |
| Users IPs                                                      | (54%)    | (53%)   | (55%)                 |  |  |  |
| Requests                                                       | ~ 30.7 M | ~2.56 M | ~2.95 M               |  |  |  |
|                                                                | (73%)    | (73%)   | (70%)                 |  |  |  |
| (includes SYN1Deg from Sep 2001 through latest month released) |          |         |                       |  |  |  |

Dot density map showing locations of users (red) and data request locations (white). Brighter colors show larger frequency at that location.





Total FF+ SYN1Deg > 10,000/month

FF nearly 4K/ month



## **SSF User Story: GLOBE Clouds**

#### GLOBE Clouds Match to a Million Celebration Event







**Since 2017:** 

- Over 1,027,000 Satellite Matches
- Over 1,190,00 GLOBE Observations
  - Over 1,855,00 Images Submitted

Celebration recording



- Use FLASHFlux SSF data for Satellite matches
- Use by Citizen scientists from grade school to retiree



## FF TISA User Story (Through POWER): Saildrone

Saildrone is a platform for ocean data collection. Typically, the data is used for:

- ocean-science
- bathymetry
- maritime security



- Saildrones are mobile
- **CERES** data is delivered through POWER's API service
  - Use a time history of locations (blue GPS track)
  - Pull data from 1x1 grid box centers
  - Seasonal archive used for solar resource projections





When both generation and load are known, then the viable operating season can be predicted.

Predicted solar generation



## Global Anomalies: EBAF + FF (Normalized)





## NOAA-20 SSF - SW FLuxes(W m<sup>-2</sup>)

#### SW TOA Up



CERES SW TOA flux - upwards -Watts per square meter

CERES NOAA20 - - 20200805



#### SW Surface Down



CERES NOAA20 - - 20200805





## NOAA-20 SSF - LW FLuxes(W m<sup>-2</sup>)

#### LW TOA Day



CERES LW TOA Daytime flux - upwards -Watts per square meter

#### CERES NOAA20 - - 20200805



#### LW Surface Down - Day



CERES LW Surface Model B Daytime flux - downwards
Watts per square meter

#### CERES NOAA20 - - 20200805





## FF SSF Flux Validation: Terra 01/2019-04/2022

#### Overpass flux validation with BSRN measurements:

- large SW scatter; underpredicts > ~300 W m<sup>-2</sup>; overestimates low
- LW night has larger scatter; instantaneous performing adequately





### FLASHFlux TISA Validation: BSRN Fluxes

Ensemble FLASHFlux LW and SW Daily Average Comparisons to BSRN Measurements (01/2019-06/2022)

LW: Bias -0.22 W m<sup>-2</sup> RMS 21.6 W m<sup>-2</sup>

SW: Bias 0.7 W m<sup>-2</sup> RMS 40.4 W m<sup>-2</sup>

Histograms show peaked, relatively symmetric distributions, median bias is negative for LW, positive for SW





## **FLASHFlux Future Production Strategy**

 Both Terra and Aqua are scheduled to be turned off in 2023; production system must be modernized and adjusted to continue production





## **FLASHFlux Summary**

- Production with v4A Begun (since Aug 1, 2020)
  - Operational FF v4A SSF and TISA v4A (since Jan 1, 2019): SSF Terra/Aqua through 9/23; TISA through 9/21
  - New FF Gain+Spectral coefficients beginning Oct 1<sup>st</sup>, 2022.
  - Production with CATALYST from June 1<sup>st</sup>, 2022. Publicly available starting on September 1<sup>st</sup>, 2022.

#### Validation and Assessment

- FLASHFlux SSF surface fluxes relative to BSRN for 01/2019 through 04/2022
- TISA Daily averages relative to BSRN for Jan 2019 through June 2022 (42 months)

#### FLASHFlux Modernization and Updates

- Migration to CERES CATALYST reached through FF SSF (also see Katie's talk); Completed
- NOAA-20 SSF data product; Goal Nov 2022
- Terra+NOAA-20 TISA data product; Goal Mar 2023
- New GEOS-IT sample data; first cut comparisons to FP-IT (still assessing); Goal Apr 2023
- ML non-linear Tree based algorithms for future FF SSF data products; Goal Aug 2023
- Migrate configuration to NOAA-20 + GEO (leveraging Ed5 TSI); Goal Oct 2023

#### • FLASHFlux Information & Data Provision Through ...

- CERES web site and subsetter both SSF and TISA, ASDC (via EarthData) and POWER
  - FF POWER Distribution in last year: ~59,200 unique IPs; > 16M orders; orders >70% low latency
- 2021 BAMS State of the Climate TOA Flux reports



## **FLASHFlux Web Sites**

https://ceres.larc.nasa.gov/data/#fast-longwave-and-shortwave-flux-flashflux

Data also served through <a href="https://power.nasa.gov">https://power.nasa.gov</a>



## **Extras**



### **User Story: 3M Energy Management System**



#### 56 of 3M Global Sites ISO 50001 Certified



- ISO 50001 provides a framework of requirements that help organizations to:
- develop a policy for more efficient use of energy
- •fix targets and objectives to meet the policy
- use data to better understand and make decisions concerning energy use and consumption
- measure the results
- review the effectiveness of the policy and
- •continually improve energy management.



## Global Anomalies: EBAF + FF (Normalized)



10/14/22



## **Example SSF Validation: Terra and Aqua**

#### Overpass flux validation with BSRN measurements (R. Scott):

- SW Model B implementation shows compensating clear/cloudy; errors to be assessed
- LW Model B seems to underestimate day-time clear-sky more than night

| Sate-<br>lite | Spectral<br>Band | All-sky<br>Bias | (W m <sup>-2</sup> )<br>RMS | Clear-sk<br>Bias | y (W m <sup>-2</sup> )<br>RMS | Cloudy Sk<br>Bias | ky (W m <sup>-2</sup> )<br>RMS |
|---------------|------------------|-----------------|-----------------------------|------------------|-------------------------------|-------------------|--------------------------------|
| Aqua          | SW               | +15.8 (3.4%)    | 153.3 (33.7%)               | -12.8 (2.0%)     | 141.7 (22.3%)                 | 36.6 (13.3%)      | 274.6 (64.0%)                  |
|               | LW day           | -2.1 (0.0%)     | 27.9 (9.1%)                 | -14.3 (5.3%)     | 33.0 (12.1%)                  | +1.2 (0.0%)       | 30.3 (9.5%)                    |
|               | LW night         | -1.1 (0.0%)     | 31.1 (11.1%)                | -5.4 (2.2%)      | 29.6 (11.9%)                  | -1.7 (0.0%)       | 33.7 (11.1%)                   |



## **FF Future Production Strategy**

 Both Terra and Aqua are scheduled to be turned off in 2023; production system must be modernized and adjusted to continue production



#### FLASHFlux SSF Aqua Monthly Latency Success Rates



#### FLASHFlux SSF Terra Monthly Latency Success Rates



#### FLASHFlux TISA Monthly Latency Success Rates





## FF Time Series (Tamanrasset, Algeria)





## FLASHFlux TISA Validation: BSRN and Ocean Buoy Fluxes

FLASHFlux v4A TISA Daily Average Fluxes (1/2019 – 6/2022)

| Region Type  | LW Bias | LW RMS | # LW Pairs | SW Bias | SW RMS | # SW Pairs |
|--------------|---------|--------|------------|---------|--------|------------|
| All Ensemble | -0.2    | 21.6   | 43,122     | 0.7     | 40.4   | 46,160     |
| Coastal      | 0.1     | 14.8   | 9460       | -1.6    | 33.8   | 9159       |
| Desert       | -16.4   | 26.3   | 4187       | -13.5   | 29.2   | 4157       |
| Island       | 4.8     | 13.2   | 3877       | 19.2    | 47.9   | 3808       |
| Continental  | 1.9     | 27.0   | 16473      | -0.7    | 45.0   | 16417      |
| Polar        | 0.8     | 20.1   | 4212       | -7.8    | 49.9   | 2854       |
| Ocean buoys  | 0.9     | 12.4   | 4913       | 6.7     | 35.6   | 9765       |



## FF Time Series (Goodwin Creek, MS, USA)





## FF Time Series (Langley Research Center, VA, USA)

